
Understanding and Simulating the IEC 61850 Standard ∗

Yingyi Liang Roy H. Campbell
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801

{yliang6, rhc}@uiuc.edu

Abstract

The recent international standard IEC 61850 proposes a
unified solution of the communication aspect of substa-
tion automation. However, the standard itself is not eas-
ily understood by users other than domain experts. We
present our understanding of the IEC 61850 standard as
well as the design and implementation of our simulation
tool in this report. Also, we give suggestions on the im-
plementation of this standard based on our experience
and lessons in the development of our simulation.

1 Introduction

Today, power substations are mostly managed by substa-
tion automation systems. These systems employ com-
puters and domain specific applications to optimize the
management of substation equipment and to enhance op-
eration and maintenance efficiencies with minimal hu-
man intervention [8].

Once upon a time, substation automation systems
utilized simple, straightforward and highly specialized
communication protocols [7]. These protocols con-
cerned less about the semantics of the exchanged data,
data types of which were relatively primitive. Equipment
was dumb and systems were simple. However, today’s
substation automation systems can no longer enjoy such
simplicity because of their growing complexity — equip-
ment becomes more intelligent and most of those simple
old systems have been gradually replaced by open sys-
tems, which embrace the advantage of emerging tech-
nology like relational database systems, multi-task oper-
ating systems and support for state-of-the-art graphical
display technology.

Besides, devices from different manufacturers used
different substation automation protocols [9, 3, 12], dis-
abling them to talk to each other. Utilities have been pay-
ing enormous money and time to configure these devices

∗This work was funded by NSF CNS 03-05537.

to work together in a single substation. Today most util-
ities and device manufacturers have recognized the need
for a unified international standard to support seamless
cooperation among products from different vendors.

The IEC 61850 international standard, drafted by sub-
station automation domain experts from 22 countries,
seeks to tackle the aforementioned situation. This stan-
dard takes advantage of a comprehensive object-oriented
data model and the Ethernet technology, bringing in great
reduction of the configuration and maintenance cost. Un-
like its predecessor, the Utility Communication Architec-
ture protocol 2.0 (UCA 2.0) [12], the IEC 61850 standard
is designed to be capable for domains besides substation
automation. To make the new protocol less domain de-
pendent, the standard committee endeavored to empha-
size on the data semantics, carving out most of the com-
munication details. This effort, however, could result in
difficulties in understanding the standard.

In this research project, we aim to get a clear under-
standing of the IEC 61850 standard and simulate the pro-
tocol based on J-Sim [11]. Our ultimate goal is to inves-
tigate the security aspect about the IEC 61850 standard.

2 The IEC 61850 standard

The first release of the IEC 61850 consists of a set of
documents of over 1,400 pages. These documents are di-
vided into 10 parts, as listed in Table 1. Part 1 to Part
3 give some general ideas about the standard. Part 4 de-
fines the project and management requirements in an IEC
61850 enabled substation. Part 5 specifies the required
parameters for physical implementation. Part 6 defines
an XML based language for IED configuration, present-
ing a formal view of the concepts in the standard. Part
7 elaborates on the logical concepts, which is further di-
vided into four subparts (listed in Table 2). Part 8 talks
about how to map the internal objects to the presenta-
tion layer and to the Ethernet link layer. Part 9 defines
the mapping from sampled measurement value (SMV)

to point-to-point Ethernet. The last part gives instruc-
tions on conformance testing. Since Part 7 defines the
core concepts of the IEC 61850 standard, we will focus
on this part in this report.

Subpart Title
7-1 Principles and Models
7-2 Abstract Communication Service Interface
7-3 Common Data Classes
7-4 Compatible Logical Node Classes and Data

Classes

Table 2: Subparts of IEC 61850-7

The IEC 61850 standard is not easy to understand for
people other than experts in the substation automation
domain due to the complexity of the documents and the
assumed domain-specific knowledge. Introductory doc-
uments on the standard abound [13, 4, 7, 5, 8, 2], but
most of them are in the view of substation automation do-
main experts. Kostic et al. explained the difficulties they
had in understanding the IEC 61850 standard [7]. In this
section, we provide another experience of understanding
this standard, trying to explain the major concepts of the
IEC 61850 standard.

2.1 Challenges

Understanding the IEC 61850 standard proposes the fol-
lowing challenges for a outsider of the substation au-
tomation domain:

1. As a substation automation standard proposed by a
group of domain experts, the IEC 61850 protocol
assumes quite an amount of domain-specific knowl-
edge, which is hardly accessible by engineers and
researchers out of the substation automation do-
main. To make things worse, the terms used in
the standard is to some extent different from those
commonly used in software engineering, bringing
some difficulties for software engineers in reading
the standard.

2. The entire standard, except Part 6, is described in
natural language with tables and pictures, which is
known to be ambiguous and lack of preciseness.
This situation is problematic because the IEC 61850
concepts are defined by more than 150 mutually rel-
evant tables distributed over more than 1,000 pages.
A formal presentation of all these concepts would
be appreciated.

3. The experts proposing this protocol come from 22
different countries and are divided into 10 working

groups, each responsible to one part of the stan-
dard. Due to the different backgrounds and the in-
formal presentation style of the standard, the stan-
dard contains a considerable number of inconsis-
tencies. Such inconsistencies are more obvious for
different parts of the standard, e.g. the data model
described in Part 6 is clearly different from that de-
scribed in Part 7.

4. The standard committee made a great effort to de-
scribe the protocol in an object-oriented manner but
the result is not so object-oriented. For example,
the ACSI services are grouped by different classes,
but reference to the callee object is not defined as a
mandatory argument of the service function.

5. The standard is designed to be implementation in-
dependent but this is not always true. For exam-
ple, the data attribute TimeAccuracy in Part 7-2
Table 8 is defined as CODED ENUM, while what it
virtually represents is a 5-bit unsigned integer; the
frequent use of PACKED LIST (i.e. “bit fields” in
the C language) also brings implementation details
to interface design.

6. Things are mixed up in the documents. Mandatory
components and optional components are mixed in
the standard, and domain independent concepts are
mixed up with domain specific concepts. Even
though the optional components and mandatory
ones are marked with “O” and “M” alternatively, it
would be a tough task to refine a model consisting
only the mandatory components due to the implicit
dependences between attributes in different tables
and the conditional inclusion of some attributes. In
fact, there are 29 common data classes and 89 com-
patible logical nodes defined in the standard, the re-
lationship among which is unclear.

2.2 Intelligent electronic device

In the past, utility communication standards usually as-
sumed some domain-specific background of the readers.
Consequently, they contained a lot of implicit domain
knowledge, which is hardly accessible to outsiders (e.g.
software engineers) [7]. The IEC 61850 standard does
not escape from this category. To help understanding the
logical concepts of IEC 61850, we would like to lay a
basic idea of intelligent electronic devices (IED), the es-
sential physical object hosting all the logical objects.

Basically, the term intelligent electronic device refers
to microprocessor-based controllers of power system
equipment, which is capable to receive or send data/con-
trol from or to an external source [8]. An IED is usu-
ally equipped with one or more microprocessors, mem-

2

Part Title
1 Introduction and Overview
2 Glossary
3 General Requirements
4 System and Project Management
5 Communication Requirements for Functions and Device Models
6 Configuration Description Language for Communication in Electronic Substations Related to IEDs
7 Basic Communication Structure for Substation and Feeder Equipment
8 Specific Communication Service Mapping (to MMS and to Ethernet)
9 Specific Communication Service Mapping (from Sampled Values)
10 Conformance Testing

Table 1: Parts of the IEC 61850 standard documents

ory, possibly a hard disk and a collection of communi-
cation interfaces (e.g. USB ports, serial ports, Ethernet
interfaces), which implies that it is essentially a computer
as those for everyday use. However, IEDs may contain
some specific digital logics for domain-specific process-
ing.

IEDs can be classified by their functions. Common
types of IEDs include relay devices, circuit breaker con-
trollers, recloser controllers, voltage regulators etc.. It
should be noted that one IED can perform more than one
functions, taking advantage of its general-purpose micro-
processors. An IED may have an operating system like
Linux running in it.

2.3 Substation architecture

A typical substation architecture is shown in Figure 1.
The substation network is connected to the outside wide
area network via a secure gateway. Outside remote op-
erators and control centers can use the abstract commu-
nication service interface (ACSI) defined in Part 7-2 to
query and control devices in the substation. There is one
or more substation buses connecting all the IEDs inside
a substation. A substation bus is realized as a medium
bandwidth Ethernet network, which carries all ACSI re-
quests/responses and generic substation events messages
(GSE, including GOOSE and GSSE). There is another
kind of bus called process bus for communication inside
each bay. A process bus connects the IEDs to the tradi-
tional dumb devices (merge units, etc.) and is realized as
a high bandwidth Ethernet network. A substation usually
has only one global substation bus but multiple process
buses, one for each bay.

ACSI requests/responses, GSE messges and sampled
analog values are the three major kinds of data active in
the substation network. Since we are less interested in
communication on the process buses (like sampled value
multicasting), we focus on the activities on the substation
bus in this report, especially the ACSI activities.

Figure 1: Substation architecture

Interactions inside a substation automation system
mainly fall into three categories: data gathering/setting,
data monitoring/reporting and event logging. The former
two kinds of interactions are the most important — in the
IEC 61850 standard all inquiries and control activities to-
wards physical devices are modeled as getting or setting
the values of the corresponding data attributes, while data
monitoring/reporting provides an efficient way to track
the system status, so that control commands can be is-
sued in a timely manner.

To realize the above kinds of interaction, the IEC
61850 standard defines a relatively complicated com-
munication structure, as is shown in Figure 2. Five
kinds of communication profiles are defined in the stan-
dard: the abstract communication service interface pro-
file (ACSI), the generic object oriented substation event
profile (GOOSE), the generic substation status event pro-
file (GSSE), the sampled measured value multicast pro-
file (SMV), and the time synchronization profile. ACSI
services enable client-server style interaction between
applications and servers. GOOSE provides a fast way
of data exchange on the substation bus and GSSE pro-
vides an express way of substation level status exchange.
Sample measured value multicast provides an effective
way to exchange data on a process bus.

3

Ethernet Link Layer

SMV GOOSE GSSE TimeSync ACSI

IP

UDP TCP

MMS

GSSE
T-Profile

Specific Communication Service Mapping (SCSM)

A
pp

lic
at

io
n

D
om

ai
n

C
om

m
un

ic
at

io
n

S
ta

ck

Figure 2: The communication profiles

2.4 Abstract communication service inter-
face

ACSI is the primary interface in the IEC 61850 standard
not only because it is the interface via which applications
talk with servers, but also in the sense that the ACSI com-
munication channel is an important part of a logical con-
nection between two logical nodes. ACSI defines the se-
mantics of the data exchanged between applications and
servers, thus it becomes the major part of the IEC 61850
standard.

The standard committee adopt an object-oriented ap-
proach in the design of ACSI, which includes a hierar-
chical and comprehensive data model and a set of avail-
able services for each class in this data model. Al-
though the data model is usually described outside the
scope of the ACSI, it is actually part of it. The ben-
efits of using an object-oriented utility communication
interface are two fold. On the one hand, objects (e.g.
registers) can be referenced in an intuitive way (e.g.
“Relay0/MMXU0.voltage”) instead of by the tradi-
tional physical address (like Reg#02432). On the other
hand, software engineers can build more reliable appli-
cations using such service interface.

In the following two sections, we present a brief de-
scription on these two ACSI components.

2.5 Data model

The hierarchical data model defined in the IEC 61850 is
depicted in Figure 3 and Figure 4.

Server is the topmost component in this hierarchy. It
serves as the joint point of physical devices and logical
objects. Theoretically one IED may host one or more
server instances, but in practice usually only one server
instance runs in an IED. A server instance is basically a
program running in an IED, which shares the same mean-

ing with other servers like FTP server etc.. Each server
has one or more access points, which are the logical rep-
resentation of a NIC. When a client is to access data or
service of the server, it should connect to an access point
of this server and establish a valid association.

Each server hosts several files or logical devices.
Clients can manipulate files in the server like talking to
a FTP server, which is usually used as a means to up-
load/update the configuration file of an IED. A logical
device is the logical correspondence of a physical device.
It is basically a group of logical nodes performing similar
functions.

Functions supported by an IED are conceptually rep-
resented by a collection of primitive, atomic functional
building blocks called logical nodes. The IEC 61850
standard predefines a collection of template logical nodes
(i.e. compatible logical nodes) in Part 7-4. Besides
the regular logical nodes for functions, the standard also
requires every logical device have two specific logical
nodes: Logical Node Zero (LN0) and LPHD, which cor-
respond to the logical device and the physical device,
alternatively. Besides holding status information of the
logical device, LN0 also provides additional functions
like setting-group control, GSE control, sampled value
control etc.. In the IEC 61850 standard, the entire sub-
station system is modeled as a distributed system con-
sisting of a collection of interacting logical nodes, which
are logically connected by logical connections. It should
be noted that the term logical connection refers to the
logical concept of the connections between two logical
nodes, which can be direct or indirect or even a combina-
tion of many different kinds of communication channels.
In fact, the connection of two logical nodes is usually
both indirect and a combination of TCP, UDP and direct
Ethernet connections. We will explain logical connec-
tions in Section 2.9.

Data exchanged between logical nodes are modeled
as data objects. A logical node usually contains sev-
eral data objects. Each data object is an instance of the
DATA class and has a common data class type. Similar to
the concept of objects in most object-oriented program-
ming languages, a data object consists of many data at-
tributes, which are instances of data attributes of the cor-
responding common data class. Data attributes are typed
and restricted by some functional constraints. Instead of
grouping data attributes by data objects, functional con-
straints provide a way to organize all the data attributes in
a logical node by functions. Types of data attributes can
be either basic or composite. Basic types are primitive
types in many programming languages, whereas com-
posite types are composition of a collection of primitive
types or composite types.

In the IEC 61850 standard, data attributes are at least
as important as, if not more than, data objects for two

4

SERVER
LOGICAL-DEVICE

LOGICAL-DEVICE

...

LOGICAL-DEVICE
LOGICAL-NODE

LOGICAL-NODE

...

LOGICAL-NODE
DATA OBJECT

DATA OBJECT

...

DATA OBJECT
DATA ATTRIBUTE

DATA ATTRIBUTE

...

Figure 3: Hierarchy of the IEC 61850 data model

reasons. Firstly, data objects are just logical collections
of the contained data attributes while (primitive) data at-
tributes are the de facto logical correspondence to the
physical entities (memory units, registers, communica-
tion ports, etc.); secondly, the purpose of data objects is
for the convenience of managing and exchanging values
of a group of data attributes sharing the same function.

Despite data objects, the IEC 61850 standard provides
the concept of data set as another ways to manage and
exchange a group of data attributes. Members of a data
set can be data objects or data attributes. The concept of
data set is somewhat similar to the concept of view in the
area of database management systems. In the IEC 61850
standard, most services involve data sets. Members in a
data set unnecessarily come from the same logical node
or the same data object, thus providing high flexibility
of data management. Data sets are categorized into per-
manent ones and temporary ones. Permanent data sets
are hosted by logical nodes and will not be automatically
deleted unless on the owners’ explicit requests; tempo-
rary data sets are exclusively hosted by the association
having created them and will be automatically deleted
when the association ends.

2.6 Service model

Services provided by ACSI include querying object set,
getting/setting data values, controlling system objects,
report manipulation, log manipulation, and other ser-
vices like file upload/download. Table 3 gives a list of
ACSI services defined in the IEC 61850 standard.

All ACSI services are requested by applications and
responded by servers. In order to request a service in
a server, an application must first establish a valid two-
party application association (TPAA) with the server.
The TPAA maintains the session states and provides a
virtual view of the server to the application. A typical
interaction procedure between an application A and a
server S goes as follows:

1. A establishes a TCP connection with S;

2. A “logs in” to S by requesting the Associate ser-
vice from S, providing authentication related infor-
mation as parameters;

LOGICAL NODECompatible Logical Node

LOGICAL DEVICE

SERVER

DATACommon Data Class

FCDA

1
1..n

1

1..n

1

1..n

1

1..n

1

0..n

TrgOp

Functional Constraint

DAType

1

0..2

11
1

1

1
1..n

BasicType

1*

Figure 4: The data model of the IEC 61850

3. S validates the information provided by A and cre-
ates a TPAA object, which provides a virtual view
of S to A;

4. A requests subsequent services while S processes
the requests and responses with appropriate re-
sponses defined in the IEC 61850 standard;

5. A issues a Release request to S;

6. S reclaims the TPAA of A and ends the session.

The virtual view of server provided by a TPAA en-
forces the access control policies set forth by the server.
This virtual view defines which objects in the server are
visible and accessible to the application and what kinds
of service of those objects are accessible from the appli-
cation. The concept of virtual view is very flexible and

5

SERVER: LOG-CONTROL-BLOCK:
GetServerDirectory GetLCBValues
ASSOCIATION: SetLCBValues
Associate QueryLogByTime
Abort QueryLogAfter
Release GetLogStatusValues
LOGICAL-DEVICE: GOOSE:
GetLogicalDeviceDirectory SendGOOSEMessage
LOGICAL-NODE: GetGoReference
GetLogicalNodeDirectory GetGOOSEElementNumber
GetAllDataValues GetGoCBValues
DATA: SetGoCBValues
GetDataValues GSSE:
SetDataValues SendGSSEMessage
GetDataDirectory GetGsReference
GetDataDefinition GetGSSEDataOffset
DATA-SET: GetGsCBValues
GetDataSetValues SetGsCBValues
SetDataSetValues MULTICAST-SAMPLE-VALUE-CONTROL-BLOCK:
CreateDataSet SendMSVMessage
DeleteDataSet GetMSVCBValues
GetDataSetDirectory SetMSVCBValues
Substitution: UNICAST-SAMPLE-VALUE-CONTROL-BLOCK:
SetDataValues SendUSVMessage
GetDataValues GetUSVCBValues
SETTING-GROUP-CONTROL-BLOCK: SetUSVCBValues
SelectActiveSG Control:
SelectEditSG Select
SetSGValues SelectWithValue
ConfirmEditSGValues Cancel
GetSGValues Operate
GetSGCBValues CommandTermination
BUFFERED-REPORT-CONTROL-BLOCK: TimeActivatedOperate
Report Time synchronization:
GetBRCBValues TimeSynchronization
SetBRCBValues FILE transfer:
UNBUFFERED-REPORT-CONTROL-BLOCK: GetFile
Report SetFile
GetURCBValues DeleteFile
SetURCBValues GetFileAttributeValues

Table 3: ACSI services

the IEC 61850 standard does not place any restriction on
the access control policies of the server. One possible
and relatively simple access control is the world-group-
owner access control for files used in many UNIX sys-
tems.

The ACSI interface defines an object-oriented inter-
face for the applications but it does not require the inter-
nal implementation to be object-oriented. In actual fact,
according to our experience on simulating the IEC 61850
protocol, object-oriented approach might not be a wise

choice for the internal implementation.

2.7 Reporting and logging

The IEC 61850 standard provides an efficient mechanism
called reporting for applications to track changes to the
subscribed system objects. Instead of polling the data
attribute values periodically, applications can group the
interesting data attributes into a data set, and require the
logical node hosting this data set report any changes to

6

the members of this data set. Theoretically a data set can
contain data objects/data attributes from different logical
nodes, but data sets for reporting usually contain only
the data objects/data attributes in the same logical node.
The procedure of report generation and transmission is
under the control of an information block called report
control block (RCB). A RCB maintains the necessary in-
formation to generate a report like which fields should
be included in the report, on what events a report should
be generated, the sequence number of the current report,
whether this RCB is enabled, etc..

A typical report generation and transmission proce-
dure is described as follows:

1. client application creates a data set containing all
the data objects and data attributes it concerns;

2. client sets the parameters in a RCB, specifies the
aforementioned data set as the source of the reports
(this step is called to “subscribe to a data set”) and
enables this RCB;

3. on any change to any member of the data set, the
logical node tests this change against the event list
of the RCB, and issues an internal event if any event
in the list gets matched;

4. on receiving the internal event, the RCB stores this
event for later sending;

5. if the condition of sending the report is satisfied, the
logical node collects necessary data, generates the
report and sends it out to the client via the associ-
ation under the direction of the parameters in the
RCB.

Reports can be sent by either two-party application as-
sociation (TPAA) or multi-party application association
(MPAA). TPAA is the association that can serve only one
client while MPAA can serve more than one client si-
multaneously. Reports generated on the request of the
Report service is sent by TPAA, whereas other reports
are sent by MPAA. Reporting uses a publisher/subscriber
mechanism: for every client, the server must assign an
individual RCB to handle the report generation and trans-
mission.

Logging is a mechanism to record the device events.
Logs are stored in the server and hosted by the corre-
sponding logical device. Unlike reporting, every time a
device event is triggered, the logical device merely saves
a log entry into the log database for later inquiries.

2.8 Generic substation event

Besides reporting, the IEC 61850 standard defines
generic substation event (GSE) as another means for ap-

plications to monitor changes to the data objects/data at-
tributes. GSE is designed for fast delivering notification
of system object changes. There are two kinds of GSE,
generic object-oriented substation events (GOOSE) and
generic substation state event (GSSE). GOOSE is used
to exchange a wide range of common data while GSSE
is used to convey state change information. The GSE
mechanism shares a lot of similarities with reporting,
with the major difference that GSE is designed for fast
information exchange inside a substation while reporting
is mainly used for sending notification from the server
side to remote control centers or browsers.

Since real-time performance is critical for GSE mes-
sages, the message format and communication stack for
GSE transmission is very different from those for report-
ing. GSE messages are transmitted in binary format,
which provides shorter message body and higher mes-
sage encoding/decoding speed. In stead of using TCP
or UDP as the underlying transport layer, GSSE uses its
specific transport layer while GOOSE messages are sent
to the Ethernet link layer directly without going through
any transport layer or network layer.

GSE also utilizes a publisher/subscriber mechanism to
transmit the messages. This mechanism is implemented
by the Ethernet multicast feature: the publisher sends the
GSE message to a specific multi-cast MAC address and
the subscribers pick up messages sent to this address, put
them into their local buffer for the local applications to
consume.

2.9 Communication network

The IEC 61850 standard defines a distributed system
consisting of interacting logical nodes, which are con-
nected by logical connections. However, in order for this
distributed system to work correctly and intelligently,
there must be some intelligent components inside this
network. It is not hard to see that applications play this
role. An interesting question is how to integrate appli-
cations into the interacting logical node network. We try
to answer this question by starting from the simple ACSI
server-application network.

Figure 5 shows such a server-application network.
Clearly, each server may serve several applications and
vice versa. The dotted lines in Figure 5 refer to the com-
munication channels for reports and GSE messages. Al-
though there are no restrictions about the relationship be-
tween report subscribers and report publishers, it is not
true for GSE messages. The design of GSE has physical
concerns. GSE messages are sent from one IED to an-
other, thus the subscribers and the publishers should not
reside in the same IED.

To make things more clear, let us transform Figure 5
into Figure 6, which shows the communication between

7

Server1

App1

Server3

Server2

App4

App5

App3

App2

Figure 5: Server-Application network

Server3

LN31

LN32

Server2

LN21

LN22

Server1

LN11

LN12

App1

App2

App4

App5

App3

Figure 6: Logical node-application network

Server3

LN31

LN32

Server2

LN21

LN22

Server1

LN11

LN12

Figure 7: Logical node network

applications and logical nodes (we hid the communica-
tion to server and logical devices). At this point, we
can clearly see that logical connections between logical
nodes are actually a mixture of several kinds of connec-
tions: when a logical node sends a message to another
logical node, it is virtually sending reports/GSE mes-
sages to the relevant applications; after necessary pro-
cessing of the reports/GSE messages, the applications is-
sue relevant requests to the other logical node, and vice
versa. Thus we can deploy the application logic to the
relevant logical nodes and get Figure 7 by abstracting
away the applications. Being aware of this abstraction is
important for both implementation and simulation of the
IEC 61850 protocol.

3 Simulating the IEC 61850

In this section, we talk about the design and implemen-
tation of a simulator of the IEC 61850 standard. Due to
the challenges listed in Section 2.1, simulating the entire
protocol is very difficult. Since the goal of our simula-
tion is to inspect possible security vulnerabilities in the
protocol, we refined the protocol to a version contain-
ing only data gathering/setting related ACSI services and
reporting services. Furthermore we simplified the data
model by abstracting various data attribute types to string
and discarding the concept of functional constraint. Cur-
rently, features of the IEC 61850 protocol supported by
our simulation model include two-party application asso-
ciation, data attribute, data object, data set, logical node,
logical device, server, ACSI services, reporting and un-
buffered report control block.

3.1 Design and implementation of the sim-
ulator

In order to inspect the IEC 61850 standard, we need a
tool to simulate the protocol. Demo software of the pro-
tocol exists [10]. However, they are mostly provided by
the IED manufacturer and are not freely available for re-
search purposes. Kostic et al. proposed an implementa-
tion of ACSI [6]. The work of Kostic et al. focuses on
implementing a set of application programming interface
for device and application development, while we would
like to build our own simulation tool for further study on
the IEC 61850, especially on network security issues.

Our simulator consists of about 3,500 lines of Java
code. Its components are divided into three major cat-
egories: the data model, internal message representation
and the service model. Figure 8 shows the architecture
of the simulator.

8

ApplicationServer

Association Service API

Object
Management

Association
Management

Remote Service APIInternal
Messaging

Reporting

Figure 8: The IEC 61850 simulator architecture

Server

LD

LN

Data DataSet URCB

DA

LD LD

LN

Data

DA DA

...

...

...

...

Figure 9: The IEC 61850 simulator data model

3.1.1 Data model

The internal data model in the simulator is the same as
the one defined in the IEC 61850 standard. All the IEC
61850 objects are instances of the I6Object class and
are organized as a tree as shown in Figure 9. I6Object
class provides a collection of services to manage the ob-
jects. Table 4 lists some frequently used services.

Name Description
addChild adds a child node

removeChild removes a child node
getName gets the node name
getRef gets the object reference
create creates a node in the tree
remove removes a node from the tree
lookup looks up a node in the tree
list lists the specific child nodes
lock locks a specific node

unlock unlocks a specific node

Table 4: Major services of I6Object

The lock and unlock services are necessary be-
cause the IEC 61850 standard allows multiple accesses

to the same object simultaneously. One would resolve
this problem by sequentializing all the received requests,
but since reports could be generated at the time when
the related data objects are being updated, synchroniza-
tion mechanism is still needed. One could implement
lock as locking the whole object tree, but this would
lead to severe performance problems, even dead locks.
Our solution is to lock the whole subtree dominated by
the locked object and mark all the ancestor nodes of that
object as partly locked so that these ancestor nodes can-
not be locked by other Associations.

Each kind of the IEC 61850 objects are implemented
as a subclass of I6Object. These subclasses pro-
vide templates to define the desired specialized classes.
For example, in order to create a specialized logical de-
vice class, one just need to derive a subclass from the
LDevice class and use the declareLN method to de-
clare the member logical nodes in the configure func-
tion.

Using the IEC 61850 data model as the internal data
model has two advantages: on the one hand, there is
no need to map the internal data representation to the
IEC 61850 data model in such an approach; on the other
hand, we can deploy the implementation of the ACSI ser-
vices to the relevant object classes thus achieve a simple
object-oriented approach. However, our simulation ex-
perience shows such a simple internal data representation
might not be a good choice because of the following two
reasons:

1. The data model defined by the IEC 61850 is unnec-
essarily structured as a tree. Functional constraints
present another view of data attributes in a logical
node, breaking the tree structure maintained by data
objects.

2. Some ACSI services are not easy to deploy to
the specific object classes. One example is the
CreateDataSet service, which should be im-
plemented by the LogicalNode class or the
Association class instead of the DataSet
class.

To maintain the tree structure, one can implement
functional constraints as implicit data sets, and redirect

9

+createSimple()
+createComplex()
+createList()
+getType()
+toXML()
+parseXML()

Msg

+getValue()
+setValue()

SimpleMsg

+appendItem()
+listItems()

ListMsg

+getAttribute()
+setAttribute()

ComplexMsg

Figure 10: Internal message of the simulator

the service requests to the appropriate object class us-
ing a dispatcher in the Association class. Instead of
maintaining an internal representation, we recommend
an other approach: using a lightweight database system
as the backend storage support. This approach provides
several benefits:

1. A database system provides the most flexible and
easiest way to maintain the appropriate tables and
views. A database system incorporates all the nec-
essary services to operate on the object tables, re-
ducing the complexity of maintaining an internal
data representation.

2. A database system supports exclusive object ac-
cesses, so the engineer does not need to explicitly
perform lock and unlock operations.

3. Database systems are usually optimized for data
storage and access, thus the database system ap-
proach can give comparable real-time performance
against the internal data representation approach.

3.1.2 Message representation

Messages are used in two cases: as internal events and as
requests/responses of ACSI services. Although the IEC
61850 standard defines manufacturing message specifi-
cation (MMS) as its representation format for informa-
tion exchange, we would like to use another information
representation format because on the one hand, MMS is
relatively complicated and on the other hand, the details
about the MMS standard is not freely available.

Messages in our simulator are represented as at-
tributed trees. There are three kinds of tree nodes (Fig-
ure 10): SimpleMsg, ComplexMsg and ListMsg.
A SimpleMsg node is a leaf node containing a
string value, which is used to represent a value. A
ComplexMsg node is a node containing a collection of
named attributes, the values of which are also nodes. A

Kernel Service API J-Sim Communication
Interface

Association Service API

Figure 11: Implementation of the ACSI service

ListMsg node is a node that represents a list, with each
member also a node. Our message tree is virtually a sim-
plified version of a XML DOM tree. Using such kind of
message representation, we can easily pass the internal
events and service parameters/responses among different
internal objects.

3.1.3 Service model

Figure 11 shows the internal architecture of the im-
plementation of the ACSI services on the server side.
Each active association is equipped with an instance of
AssocAPI. AssocAPI provides the basic ACSI inter-
face for an association instance. On receiving the appli-
cation requests, the association instance invokes relevant
services provided by AssocAPI to complete the tasks.
AssocAPI is supported both by the underlying kernel
services which provides the basic functions to complete
the ACSI service requests, and by the communication
utilities, which talks to J-Sim [11], a network simulator.

Instead of delivering the reports using multi-party ap-
plication associations, we deliver them to the applica-
tions using the corresponding two-party application as-
sociations. The reporting procedure is rather straight-
forward: when the value of a data attribute is changed
or updated, we check whether this operation satisfies the
trigger condition. If the trigger condition is met, the data
attribute issues an internal event to all the data sets mark-
ing it as a member and those data sets will forward the
internal event to the active report control blocks, which
generate the reports and send them to the subscribing ap-
plications. For the sake of simplification, we assume the
members of a data set are all data attributes in our simu-
lation.

3.2 Running the simulator

One can follow the following steps to create a simulation
scenario and run a simulation:

Step 1 create specialized classes based on the tem-
plate classes.
The simulation package provides the necessary
template classes from Server to DataAttr.
Users just need to derive a specialized class from

10

the appropriate template class and configure this
class in the configure method as follows:

class DemoRelay
extends LDevice {

...
protected void configure() {
declareLN(new DemoXCBR(‘‘XCBR0’’));
declareLN(new DemoMMXU(‘‘MMXU0’’));
}
}

Step 2 create applications based on the
Application class.
Similar to the previous step, one needs to define
his own specialized Application class:

public class DemoApp1
extends Application {

protected void _start() {
...
}
}

Currently, our simulation package only supports
talking to one server for each application in-
stance. Enabling an application instance to talk
to multiple servers remains our future work.

Step 3 create the network topology in J-Sim.
We shall build a network scenario to simu-
late. One could easily create the require network
topology in J-Sim by following the INET Tuto-
rial [1]. It should be noted that only TCP based
communication is supported in current version of
our simulator.

Step 4 bind Application instances to the J-Sim nodes.
After the above steps are done, we should bind
the specialized Application instances to the J-Sim
network nodes:

set server [java::new demo.DemoServer]
mkdir demo.DemoApp1 h3/app1
connect -c h3/tcp/up@

-and h3/app1/down@

mkdir demo.DemoApp2 h4/app2
connect -c h4/tcp/up@

-and h4/app2/down@

Step 5 call createTPAA to create TPAAs and bind
them to the J-Sim nodes.
Then bind the TPAA instances to the J-Sim net-
work nodes:

cp [$server createTPAA] h1/tpaa1
connect -c h1/tcp/up@

-and h1/tpaa1/down@

cp [$server createTPAA] h2/tpaa2
connect -c h2/tcp/up@

-and h2/tpaa2/down@

Step 6 start J-Sim simulation.
Finally, we can start the simulation of the IEC
61850 standard:

set sim [attach_simulator .]
start the association instances
run h1-2
then the application instances
run h3-4

4 Conclusions

Due to its complexity and the assumed domain-specific
knowledge, the IEC 61850 standard is difficult for people
other than domain experts to understand and implement.
We presented our understanding of the standard as well
as the design and implementation of our simulation of the
IEC 61850 protocol based on J-Sim. Our experience and
lessons of simulating the protocol show that although the
IEC 61850 adopts an object-oriented approach, imple-
menters still need their own internal data representation
or take the advantage of a database system.

5 Acknowledgments

We would like to thank Zahid Anwar and Jianqing Zhang
for their keen discussions on the IEC 61850 standard.

References

[1] J-sim inet tutorial, December 2003. http://www.j-sim.
org/drcl.inet/inet_tutorial.html.

[2] BRAND, K.-P. The standard iec 61850 as prerequisite for in-
telligent applications in substations. Power Engineering Society
General Meeting, 2004. IEEE (June 2004), 714–718 Vol.1.

[3] DNP USERS GROUP. The distributed network protocol. Website.
http://www.dnp.org/.

[4] DOLEZILEK, D. Iec 61850: what you need to know about func-
tionality and practical implementation. Power Systems Confer-
ence: Advanced Metering, Protection, Control, Communication,
and Distributed Resources, 2006. PS ’06 (March 2006), 1–17.

[5] KIM, G.-S., AND LEE, H.-H. A study on iec 61850 based
communication for intelligent electronic devices. Science and
Technology, 2005. KORUS 2005. Proceedings. The 9th Russian-
Korean International Symposium on (2005), 765–770.

[6] KOSTIC, T., AND FREI, C. Modelling and using IEC 61850-7-2
(ACSI) as an API. In Power Tech 2007 Proceedings (July 2007).

[7] KOSTIC, T., PREISS, O., AND FREI, C. Understanding and us-
ing the iec 61850: a case for meta-modelling. Computer Stan-
dards & Interfaces 27, 6 (June 2005), 679–695.

11

[8] MCDONALD, J. Substation automation. ied integration and avail-
ability of information. Power and Energy Magazine, IEEE 1, 2
(March and April 2003), 22–31.

[9] MODBUS-IDA. Modbus application protocol specification
v1.1b, December 2006. http://www.modbus-ida.org/.

[10] SYSTEMS INTEGRATION SPECIALISTS COMPANY,
I. IEC 61850 evaluation kit CD-ROM. Software.
http://www.nettedautomation.com/solutions/
uca/evalkit/index.html.

[11] TYAN, H. Y., AND HOU, C. J. Javasim: A component-based
compositional network simulation environment. In Proceed-
ings of the Western Simulation Multiconference – Communica-
tion Networks And Distributed Systems Modeling And Simulation
(January 2001).

[12] UCA INTERNATIONAL USERS GROUP, I. Introduction to
UCA R©version 2.0. Tech. rep., Institute of Electrical and Elec-
tronics Engineerings, Inc., November 1999.

[13] UDREN, E., KUNSMAN, S., AND DOLEZILEK, D. Significant
substation communication standardization developments. In 2nd
Annual Western Power Delivery Automation Conference (WP-
DAC) Proceedings (April 2000).

12

View publication statsView publication stats

https://www.researchgate.net/publication/32964907

